1
If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
answer = sum $ takeWhile (< 1000) [ n | n <- [ 1 .. 999 ], mod n 3 == 0 || mod n 5 == 0 ]
2
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
answer = sum $ filter even $ takeWhile (<= 4000000) $ map fst $ iterate (\ (a,b) -> (b, a+b)) (1, 2)
3
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
answer = maximum $ fact 600851475143 where -- Get the factors of N, not sorted fact n = factors n 2 where -- Get the factors of N -- p <= (the next factor of n), p <- Z+ factors n p | n == 1 = [1] | n > 1 = if mod n p == 0 -- if p is a factor then p:(factors (div n p) p) else factors n (succ p) -- else try next
4
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers.
answer = maximum $ [ x*y | x <- [ 100 .. 999 ], y <- [ 100 .. 999 ], isPalindrome $ show(x*y) ] where isPalindrome l = l == reverse(l)
5
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
foldr lcm 1 [1..20]
6
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
ans = s2 - s1 where s1 = sum $ map (\ a -> a^2 ) [ 1 .. 100 ] s2 = (sum [ 1 .. 100 ])^2
出乎意料地快。
8
The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
import Data.Charans = maximum productLst where productLst = getProductLst number where number = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450" getProductLst l | len == 13 = [ productOf1to13 ] | otherwise = productOf1to13:getProductLst(tail l) where len = length l productOf1to13 = product from1to13 where from1to13 = map (\ a -> read (a:[]) :: Integer) $ take 13 l-- ^^^^^^^-- Necessary. Or you will get some negative numbers.
9
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
a^2 + b^2 = c^2For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
ans = product' $ head $ [ (a, b, c) | c <- [ 1 .. 1000 ], b <- [ 1 .. c ], a <- [ 1 .. b ], a + b + c == 1000, a^2 + b^2 == c^2 ] where product' (x, y, z) = x * y * z